Role of Conserved Gly-Gly Pairs on the Periplasmic Side of LacY.

نویسندگان

  • Xiaoxu Jiang
  • Magnus Andersson
  • Bryan T Chau
  • Larissa Y Wong
  • Maria Katerina R Villafuerte
  • H Ronald Kaback
چکیده

On the periplasmic side of LacY, two conserved Gly-Gly pairs in helices II and XI (Gly46 and Gly370, respectively) and helices V and VIII (Gly159 and Gly262, respectively) allow close packing of each helix pair in the outward (periplasmic)-closed conformation. Previous studies demonstrate that replacing one Gly residue in each Gly-Gly pair with Trp leads to opening of the periplasmic cavity with abrogation of transport activity, but an increased rate of galactoside binding. To further investigate the role of the Gly-Gly pairs, 11 double-replacement mutants were constructed for each pair at positions 46 (helix II) and 262 (helix VIII). Replacement with Ala or Ser results in decreased but significant transport activity, while replacements with Thr, Val, Leu, Asn, Gln, Tyr, Trp, Glu, or Lys exhibit very little or no transport. Remarkably, however, the double mutants bind galactoside with affinities 10-20-fold higher than that of the pseudo-WT or WT LacY. Moreover, site-directed alkylation of a periplasmic Cys replacement indicates that the periplasmic cavity becomes readily accessible in the double-replacement mutants. Molecular dynamics simulations with the WT and double-Leu mutant in the inward-open/outward-closed conformation provide support for this interpretation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trp replacements for tightly interacting Gly-Gly pairs in LacY stabilize an outward-facing conformation.

Trp replacements for conserved Gly-Gly pairs between the N- and C-terminal six-helix bundles on the periplasmic side of lactose permease (LacY) cause complete loss of transport activity with little or no effect on sugar binding. Moreover, the detergent-solubilized mutants exhibit much greater thermal stability than WT LacY. A Cys replacement for Asn245, which is inaccessible/unreactive in WT La...

متن کامل

Evidence for an intermediate conformational state of LacY.

LacY mutant Cys154 → Gly exhibits a periplasmic-closed crystal structure identical to the WT, but is periplasmic-open in the membrane. The mutant hardly catalyzes transport, but binds galactosides from either side of the membrane with the same affinity and is resistant to site-directed proteolysis relative to the pseudo-WT. Site-directed alkylation was also applied to 11 single-Cys mutants in C...

متن کامل

The Cys154-->Gly mutation in LacY causes constitutive opening of the hydrophilic periplasmic pathway.

The lactose permease of Escherichia coli (LacY) is a highly dynamic membrane transport protein, while the Cys154-->Gly mutant is crippled conformationally. The mutant binds sugar with high affinity, but catalyzes very little translocation across the membrane. In order to further investigate the defect in the mutant, fluorescent maleimides were used to examine the accessibility/reactivity of sin...

متن کامل

Sugar binding induces an outward facing conformation of LacY.

According to x-ray structure, the lactose permease (LacY) is a monomer organized into N- and C-terminal six-helix bundles that form a deep internal cavity open on the cytoplasmic side with a single sugar-binding site at the apex. The periplasmic side of the molecule is closed. During sugar/H(+) symport, a cavity facing the periplasmic side is thought to open with closure of the inward-facing cy...

متن کامل

Single-molecule FRET reveals sugar-induced conformational dynamics in LacY.

The N- and C-terminal six-helix bundles of lactose permease (LacY) form a large internal cavity open on the cytoplasmic side and closed on the periplasmic side with a single sugar-binding site at the apex of the cavity near the middle of the molecule. During sugar/H(+) symport, an outward-facing cavity is thought to open with closing of the inward-facing cavity so that the sugar-binding site is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 55 31  شماره 

صفحات  -

تاریخ انتشار 2016